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Phase-field simulations of velocity selection in rapidly solidified binary alloys
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Time-dependent simulations of two-dimensional isothermal Ni-Cu dendrites are simulated using a phase-
field model solved with a finite-difference adaptive mesh refinement technique. Dendrite tip velocity selection
is examined and found to exhibit a transition between two markedly different regimes as undercooling is
increased. At low undercooling, the dendrite tip growth rate is consistent with the kinetics of the classical
Stefan problem, where the interface is assume to be in local equilibrium. At high undercooling, the growth
velocity selected approaches a linear dependence on melt undercooling, consistent with the continuous growth
kinetics of Aziz et al. and with a one-dimensional steady-state phase-field asymptotic analysis of Ahmad et al.
[Phys. Rev. E 58, 3436 (1998)]. Our simulations are also consistent with other previously observed behaviors
of dendritic growth as undercooling is increased. These include the transition of dendritic morphology to
absolute stability and nonequilibrium solute partitioning. Our results show that phase-field models of solidifi-
cation, which inherently contain a nonzero interface width, can be used to study the dynamics of complex

solidification phenomena involving both equilibrium and nonequilibrium interface growth kinetics.
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I. INTRODUCTION

Rapid solidification plays an important role in the casting
of technologically relevant alloys through the development
of metastable phases and highly refined microstructures that
exhibit very high-strength properties. While many properties
of solidification microstructures at low to moderate cooling
rates are fairly well understood, solidification growth rates
and microstructure selection at high cooling rates, where
nonequilibrium effects at the growth front dominate, remain
unclear.

At low undercooling, the kinetics of solidification are
governed by the classical Stefan problem, wherein the inter-
face is assumed to be in local equilibrium. This describes
solute (or heat for pure materials) diffusion in the bulk solid
and liquid phases in conjunction with two kinetic boundary
conditions at the solid-liquid interface: (1) the Gibbs-
Thomson condition and (2) flux conservation across the
solid-liquid interface. In the case of symmetric diffusion con-
stants, the standard sharp-interface model (more precisely, a
dimensionless form that is suitable to both alloy and pure
dendrites) has been studied extensively [1-4], yielding pre-
dictions of dendritic tip growth rates and tip radius versus
undercooling and surface tension anisotropy. These predic-
tions were later separately confirmed with two-dimensional
(2D) and three-dimensional (3D) phase-field simulations op-
erating in the standard sharp-interface limit [5-7], and with
experiments on nickel dendrites [7].

At high undercooling, on the other hand, experiments
[8—11] and theoretical considerations [12—-18] show that so-
lidification kinetics differ markedly from those at low under-
cooling. In this regime, alloy solidification kinetics are ex-
pected to be dominated by nonequilibrium solute partitioning
[12,19] and thermal effects [17,18]. More specifically, as the
solidification rate increases, the length over which solute is
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diffused becomes comparable to the nanoscale interface
separating the solid-liquid interface, making equilibrium sol-
ute redistribution into the liquid impossible (“solute trap-
ping”). This limit is characterized by a mismatch in the
chemical potential across the solid-liquid interface and a
velocity-dependent local liquidus slope and solute partition
coefficient. To date, there has not been a fully self-consistent
solution of a sharp-interface solidification model valid in the
high-undercooling regime (e.g., the continuous-growth
model of Aziz et al. [16] or the nonequilibrium model Refs.
[17,18], which also incorporate thermal effects). Some semi-
empirical treatments usually treat the velocity as an input
parameter from experiments [10] at high undercooling.
Moreover, they do not produce independent predictions of
both dendrite growth rate selection and morphology. Other
models, which use marginal stability to obtain self-consistent
predictions of tip velocity and radius [17,18], differ in sig-
nificantly in their formulation from previous continuous
growth models. Moreover, it is not expected that the predic-
tions of these analytical approaches will be correct at low
undercooling, where it is known that the predictions of mar-
ginal stability theory do not agree with those of solvability
theory.

Simulating solidification microstructure evolution using
sharp-interface models is usually a nontrivial task in 2D and
3D. Phase-field models of solidification offer a significantly
simpler alternative. They are also physically based, derivable
(in many cases) from a phenomenological free energy that
makes contact with thermodynamic and microscopic proper-
ties of solidification [7]. For low undercooling, recent ad-
vances in phase-field matched asymptotics—a mathematical
procedure for mapping the asymptotic behaviour of a phase-
field model onto that of a sharp-interface model—provide
several ways to quantitatively simulate the standard sharp-
interface limit for the case of strongly asymmetric solute
mobility, even with relatively diffuse interface widths
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[20-22]. At high solidification velocities, 1D steady-state
analysis [23], and 2D time-dependent thin-interface
asymptotic analysis [24] both show that solidification phase-
field models asymptotically map, to lowest order, onto a
sharp-interface model containing the same physics as the
continuous-growth model of Ref. [16]. Higher-order matched
asymptotic analysis of solidification phase-field models fur-
ther reveals that in the thin-interface limit, the flux conserva-
tion boundary condition should also contain an additional
lateral surface diffusion term that scales with the interface
width [21,22].

The objective of this paper is to investigate dendritic ve-
locity and microstructure selection in rapidly solidified Ni
-Cu alloys using two-dimensional, time-dependent phase-
field simulations. Specifically, we wish to demonstrate that
both equilibrium and nonequilibrium interface kinetics, and
the associated change in velocity selection that they induce,
can be captured in a unified and self-consistent way by the
use of a phase-field model. The remainder of the paper is
organized as follows. Section II introduces the phase-field
model we employ, as well as a finite-difference adaptive
mesh refinement algorithm. Section III discusses the transi-
tion to absolute stability of dendritic morphology as the un-
dercooling is increased. In Sec. IV, we examine a corre-
sponding transition in the dendritic growth velocity as
undercooling is increased. In Sec. V, we examine that our
simulations are consistent with the solute partitioning model
of Aziz and co-workers [15,16].

1I. 2D PHASE-FIELD MODEL AND NUMERICAL
ALGORITHM

A. Phase-field model of solidification

In this work, we simulate isothermal solidification of a 2D
binary alloy using the phase-field model of Ref. [23], which
is expressed in dimensionless form by

L&_qb_ de(6) 9
M, o (E(OV ) - ((0) 0 ay)
9 de(0)dd\ af(.C.T)
+§y<6(0) do dx >_ I )
< _ (MZC(I - C)Vaf(d) <. T)> )

where ¢ is the phase-field parameter, which is taken as 0 in
the liquid phase and 1 in the solid phase. The field C(x,?) is
the dimensionless (molar fraction) alloy concentration field,
while 7 denotes the constant temperature. The parameter M
is related to the interface kinetic coefficient i, (see below),
while M, is related to the solute diffusivity D (see below).
The variable 6= arctan(%/ %) is the angle between the
interface  normal  direction and x axis, Wwhile
e(0)=¢y[1+e€4c0s(6)] is the standard fourfold anisotropy
function, with ¢, related to the interface width /, and the
surface tension o (see below). The function f(¢,C,T) is the
bulk free-energy density

PHYSICAL REVIEW E 74, 031602 (2006)

f(d)s C’T) = Cf3(¢,T) + (1 - C)fA(¢9T)

+ ﬂW[C InC+(1-0C)In(1-0)] (3)
Vi
where fi(#,T) (j=A,B) is the free-energy density of pure
material A or B and V), is the molar volume of the bulk
material (assuming it is the same for A and B materials). R is
the gas constant. The functions f; are given by

_i
fon =g+ BT
4 T,

where W;=120;/1;, with [; representing the interface width of
material j and o; 1ts surface tension energy. The parameters
TJ and L; represent the melting temperature and latent heat
of fusion of material j, respectively. The interface interpola-
tion functions g(¢) and p(¢) are given by

p(d)=¢*(3-2¢), g(d)=¢(1-¢). (5)

In what follows, we will assume that o;=0 and l i=l for both
materials A and B. The relation between the phase-field and
materials parameters is then given by [23]

Ml :ﬁA_T?’I, M2= M’ (6)
6Ll RT
€ = 60l. (7)

In the above model, time is measured in units of 7
=2L,15/(fi,oTy,) and space in units of w= \21,. The form of
interpolation functions D(¢) is not known within the region
of the solid-liquid interface. We approximate it in this work
by a linear interpolation between the solid and liquid diffu-
sivities D(¢)=Dgp+ D, (1 — ) [23], where Dy and D, are the
solute diffusion coefficients of the solid and liquid phase,
respectively. For the particular choices of D(¢), p(¢), g(d)
given above the phase-field model recovers, at high under-
cooling and within the limits of a 1D steady-state analysis,
the kinetics of a particular continuous growth model of Refs.
[16,23]. We note that by choosing the interpolation function
D(¢), and the definition of the solid-liquid interface, it is
possible to recover any particular continuous growth model
in the thin-interface limit of Egs. (1) and (2) [22]. The pro-
cedure to do this will be reported in a future presentation.

The phase-field model defined in Egs. (1) and (2) was
employed to investigate the growth rate and morphology se-
lection by varying the nominal undercooling in Ni-Cu alloys.
The material parameters used in the simulations are summa-
rized in Table 1. For computational expedience our simula-
tions were run with varied sizes of the interface width (lfff),
which is artificially increased from the real value (I4) by
factors of 5, 10, 20, 40, and 100. For each value of the
interface width, an effective liquid diffusion coefficient (thf)
was introduced such that DS"/[5"=D, /1,. This allowed us to
examine the effect of decreasing interface widths while
maintaining an approximately invariant transition velocity
scale separating the low- and high-undercooling regimes dis-
cussed below [see Eq. (10) below or Ref. [23]].
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TABLE I. Materials parameters for the Ni-Cu system, reprinted
from Ref. [23].

La 2.35%10° J/m?
Lg 1.725 X 10° J/m?
Ty 1728 K

i 1358 K

N 0.28 J/m?
oy 0.28 J/m?
s 2.428 m/s K
D, 107° m?/s
Dy 10714 m?/s

Iy 6.48X 10719 m
Iy 6.48X 10719 m

B. Adaptive mesh refinement algorithm

The phase-field model was solved using a C++ adaptive
mesh refinement (AMR) algorithm that uses finite differ-
ences to solve Egs. (1) and (2). We have found that adapta-
tion with finite differences allows approximately a 5-10 fold
increase in simulation speed (measured as CPU time per
node) over previous finite-element formulations [6,22,25],
and an even further improvement of simulation efficiency for
models containing higher-order spatial gradients (e.g., phase-
field models of eutectic growth, or recent phase-field crystal
models for pure materials [26] and alloys [27] solved in
phase-amplitude space [24]).

Our finite-difference adaptive mesh refinement method
stores nodes, rather than elements, on a data structure analo-
gous to quad-tree structure. On a separate data structure, we
also introduce so-called ghost nodes, which are used to carry
out the appropriate finite differences at all simulation nodes.
Ghosts nodes have their field values interpolated from
nearby real nodes using standard bilinear interpolation. As in
the finite-element AMR method we can determine the local
refinement of the nodes by an error estimation from local

gradients in the element, e=C, |V ¢|+C,|VC|, where C, and
C, are constants. The code itself allows the user to substitute
this criterion with any other error estimation scheme.

The use of an adaptive mesh allowed us to simulate sys-
tems sizes of 6400w X 6400w, with a resolution of dx
=0.4w at the solid-liquid interface and a time step of dr
=0.017 in the simulation of Fig. 1(a) and dr=0.00057 for
Fig. 1(b). On a uniform mesh, such a system would require
256 X 10° nodes at all times, whereas at early times the AMR
algorithm contains only a few thousand nodes. At late times,
the efficiency of our algorithm scales with the available mi-
crostructure interface, not the system area (2D) or volume
(3D). The basic reason for the improved performance of our
AMR algorithm relies on the reduced number of operations
per node required for one finite-difference update at a node,
versus the number required using the finite-element method
(FEM). Further details of the algorithm will be presented
elsewhere. We note that our approach has many similarities
with a finite-volume approach recently introduced in [28].
The efficiency of the finite-volume algorithm introduced in
that work was reported to be similar to that of our previous
FEM algorithm.
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III. MORPHOLOGICAL TRANSITION
OF THE GROWTH FRONT

Figure 1(a) shows a steady-state crystal morphology
obtained at dimensionless nominal supersaturation,
Q=(C]1-C,.)/(C;1-C§)=0.73, where C;* and Cg' denote
the equilibrium solute concentrations in the liquid and solid
phases, respectively, and C., denotes the initial alloy compo-
sition (set in this work to C,.=0.0717). We note that the
supersaturation measured the degree of undercooling below
the liquidus line for a given average solute concentration C,.
Specifically, the undercooling AT is related to the supersatu-
ration with the following equality: AT=mC,Q(1-k,)/[1
-Q(1-k,)], where m is the absolute value of the liquidus
slope, and k, denotes the equilibrium partition coefficient.
We note that as supersaturation increases, so too does the
undercooling. We also note that the effective supersaturation
at the interface deviates from () at high solidification rates,
since it is calculated using the initial alloy concentration and
the corresponding equilibrium solid and liquid concentra-
tions; in fact, at high supersaturation, Q=(C,—-C.)/(C,
—Cg)— l,where C, and Cg denote the nonequilibrium con-
centrations on the liquid and solid sides of the interface,
respectively. The data was obtained for the case where lfo
=100/,=6.48 X 1078 m. As supersaturation is increased,
fourfold-anisotropic crystals give way to a uniform nonden-
dritic crystal morphology [Fig. 1(b), 1=0.85]. We note that
since simulation time increases sharply as lf,ff—>lA and
— 0, we do not obtain truly steady-state dendritic structures
at low supersaturation for the values of [, we used in this
work. At large (), however, we can observe uniform steady-
state morphologies for all values of lfff.

The morphological transition shown in Fig. 1 is caused by
the transition of the interface to absolute stability. It has been
observed in experiments [8,29,30] and has been simulated in
previous phase-field studies [31,32]. This transition is char-
acterized by a transition of dendritic structures, prevalent at
low undercooling, to uniform or “globular” [32] structures at
high undercooling.

Our phase-field simulations are consistent with theoretical
arguments [33], which set a lower limit of absolute stability
on the interface velocity v,=LAT D/(ko-T’,}‘l) denoting the ab-
solute stability velocity. This limit expresses the condition
where the solute diffusion length becomes of the same order
as the capillary length. We note that due to solute trapping
effects, the partition coefficient becomes velocity dependent
(see below), thus making the absolute stability velocity occur
at lower value than predicted assuming equilibrium partition-
ing [31].

We also expect that for sufficiently large undercooling,
the transition to complete solute trapping will render our
morphological results invalid, as heat transfer becomes more
important than mass transfer. Specifically, as the thermal dif-
fusion length approaches the length scale of the crystal, the
kinetics of the growing dendrite will thus be described by
those of pure material with a modified melting temperature,
with interface kinetics and curvature controlling the pattern
selection process. To properly capture the onset of dendritic
branching at very high undercooling we must thus include
temperature variation in our model [34].
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FIG. 1. (Color online) (a) Con-
centration map of equiaxed den-

drite structure obtained at dimen-

sionless supersaturation (2=0.73.

The system size shown is 1000w

X 1000w and the configurations

(from left to right) were taken at

t=18007, 38007, and 58007, re-

spectively. (b) Concentration map

of uniform crystal morphology

obtained at a higher supersatura-

tion =0.85. The system size

shown is 1200w X 1200w and the

configurations (from left to right)

were taken at t=2257, 3757, and
t=5257, respectively. Warm colors
denote high concentration and

cold colors represent low

concentration.

(a) (b)

IV. SOLIDIFICATION GROWTH RATE SELECTION

Figure 2 shows dendrite tip speeds extracted from our
simulations versus undercooling for lfff/ 1,=5,10,20,40, and
100. For all cases, velocity undergoes a continuous transition
between a low-velocity and a high-velocity branch at a criti-
cal temperature, denoted here as 7. As a comparison, the
inset of Fig. 2 also compares the dendrite tip velocity below
the transition temperature to the tip velocity predicted by
simulating the thin-interface limit of the dilute binary alloy
model of Ref. [20], which uses an antitrapping term to cor-
rect for solute trapped by the presence of a finite interface
width. The use of antitrapping ensures that the dilute binary
alloy model is emulating the standard sharp-interface model
where the interface is in local equilibrium.

Since we are in the dilute limit, we expect our low-
undercooling results to approach those of the thin-interface
limit with antitrapping. At low undercooling, our simulations
with lf\ff/ I4,=5 and 100 overestimate the standard sharp-

interface results. This is due to the fact that in the limit of
low undercooling, it is difficult to achieve the simulation
times required to reach steady state. Nevertheless, it is evi-
dent that as ljff decreases, our simulations at low undercool-
ing begin to converge toward the equilibrium sharp-interface
limit. It should be emphasized that the precise convergence
at low undercooling is not of specific importance here, as our
focus is on the solidification kinetics in the high-
undercooling regime.

As undercooling increases, we expect solute trapping to
become important as the solute diffusion length becomes of
the same order as the interface width. In this limit, solidifi-
cation should become kinetically limited. This is consistent
with our simulations in the main part of Fig. 2, which show
a sharp rise in the velocity at a critical temperature. The
transition in the velocity occurs when v ~ D$"/ 5. The value
of the critical temperature and velocity jump at the transition
were estimated by extrapolating our results to the limit l;ff
—14. Specifically, we found that 7.~ 1701 K.
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FIG. 2. (Color online) Growth rate versus undercooling for dif-
ferent interface widths and solute diffusion coefficient. The inset is
an enlargement of the low-undercooling portion of main figure. The
“Analytical” data set refers to the solute trapping model of Aziz and
co-workers discussed in Ref. [23].

To further check the consistency of our simulations, we
compared our high undercooling simulation results to the 1D
steady-state analysis of Ref. [23] (done in the limit where
D; =Dy and k,<1), which relates the interface temperature
to the local interface velocity at high undercooling according
to

v 24v

Tii=Ty— — + - —my(v)C.In(1/k,) (8)
Ly 350
where

In(1/k,
Ty= 1% 4 me e, MUK ©)

1-k,

D, In(1/k

o ~ 020722 1007Ke). (10)

lA (1 - ke)

where T}, is the temperature at the interface, v is the inter-
face velocity, m; (v) is the velocity-dependent liquidus slope
[16,23], evaluated in the limit of small C.,. The straight line
denoted “Analytical” in Fig. 2 corresponds to the large-v
limit of Eq. (8), and shows that at high undercooling, our
simulations approach the continuous-growth model predic-
tion (e.g., Refs. [16,23]) for all I, used (note that we ne-
glected curvature and set Cy= C,, and the real partition co-
efficient k=1).

We note that the value of the kinetic coefficient employed
in this work is considerably larger than that reported in other
work [35,36]. A smaller kinetic coefficient will generate a
small plateau in the velocity vs undercooling curve just prior
to undergoing the transition [17,18] to the linear behavior of
Eq. (8), which we also expect to observe in our phase-field
simulations.
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FIG. 3. (Color online) Concentration versus position obtained at
different undercoolings. The data have been shifted so that the in-
terface positions line up.

Our velocity vs undercooling data are consistent with ex-
perimental data for a Ni-0.007B alloy in Ref. [10], exhibiting
both the existence of a velocity jump to a high-v branch, as
well as an approach toward a linear growth rate above the
transition.This transition in growth rate is also consistent
with a semiempirical model presented in Ref. [10], which
incorporates Aziz and co-workers’ velocity-dependent solute
partitioning function (see below). It is also consistent with a
marginal stability analysis of a nonequilibrium sharp-
interface solidification model in Refs. [17,18], which as-
sumes a crossover from partial to complete solute trapping
beyond a critical velocity, after which the growth is ther-
mally controlled. Our phase-field simulations and previous
sharp-interface analyses suggest that as solute trapping ef-
fects become large enough, interface kinetics will start to
dominate the growth process, leading to a transition in
growth velocity toward a linear dependence on undercooling.
A more quantitative treatment of solidification at high under-
cooling must incorporate heat transfer into our existing equa-
tions. Phase field simulations investigating the role of solute
transport vs heat transfer in this transition will be presented
in future publications.

V. NONEQUILIBRIUM SOLUTE PARTITIONING

Figure 3 plots five steady-state concentration profiles near
the interface region for five different temperatures for the
case I5T=1001,. It can be seen that the diffusion length is
decreasing with undercooling, with the concentration profile
becoming essentially a spike at the interface as T=T..
Above T,, Cy/C,=~k,=C3'/C;). For T<T,, on the other
hand, Cs/C;— 1.

Figure 4 plots the interface values of Cg and C; (for the
case where °"'=1001,) versus undercooling. The value of Cj
was obtained by examining the solute concentration far away
from the interface in the solid phase, while C; was identified
with the maximum value of C in the interfacial region. Fig-
ure 4 also shows the equilibrium solid-liquid concentrations
vs. undercooling (indicted by the straight liquidus and soli-
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FIG. 4. Simulated interface concentrations versus undercooling.
The equilibrium values are also shown for comparison by the
dashed lines. The systematic shift of our simulation from the equi-
librium values at low undercooling is due to curvature.

dus lines). This behavior of the solute concentration is also
directly analogous to that reported by Eckler ef al. [10]. The
rise of solute concentration in the solid phase above its equi-
librium value and toward the initial liquid concentration in-
dicates a reduced amount of solute rejected away from the
solid. This limit is indicated in a smooth transition in the
solute partition coefficient, which we found to follow almost
perfectly the expression of Aziz and co-workers [16,23]
given by

ke+U/UD

k(v) = (11)

1+vlv D '
The nonequilibrium partition coefficient exhibits a smooth
transition as v ~uvp, which according to Eq. (10) also occurs
when the solute diffusion length approaches D;/v ~1,.

VI. CONCLUSIONS

The time-dependent growth of isothermal 2D dilute Ni
-Cu alloy dendrites was simulated using a phase-field model.
To make contact with the thin-interface limit at low under-
cooling, we used a finite-difference adaptive mesh refine-
ment algorithm. Crystal morphologies were consistent with
previous analytical and phase field simulations [31,32], ex-
hibiting a transition from dendritic to globular patterns above
the absolute stability limit. Similarly, we confirmed that sol-
ute partitioning is greatly reduced as interface velocity is
increased, following the partitioning law of the continuous
growth model of Aziz and Kaplan [15], and consistent with
other sharp-interface models [37].

The main focus of our work was the examination of self-
consistent velocity selection from low to high undercooling.
At low undercooling (and as the interface width approached
its true nanoscale value), dendritic growth velocity was
found to approach the thin-interface predictions of the dilute
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binary alloy phase field model of Karma [20]. In the thin-
interface limit of this phase-field model, interface properties
are essentially in local equilibrium, with negligible interface
kinetics. At high undercooling our phase simulations exhibit
the characteristic transition to a kinetically driven growth
velocity, a situation predicted by the continuous growth
model of Aziz and Kaplan [15], a 1D steady-state analysis of
Ahmad er al. [23] and a marginal stability analysis of a non-
equilibrium sharp interface model of Galenko and Danilov
[18]. Our simulations demonstrate that dynamical phase-field
models of solidification, by virtue of a nonzero interface
width, and depending on the length and time scales over
which solute partitioning must occur, are able to capture the
correct phenomenology of equilibrium and nonequilibrium
dendritic growth kinetics over a wide range of undercooling.
Further work is currently under way to extend our phase-
field model to include the competition between mass and
heat transport effects. It is noteworthy that our results are not
expected to be specific to the phase-field model we simu-
lated, as they arise from solute trapping due to the competi-
tion between two length scales, namely, the solute diffusion
length and the interface thickness. Furthermore, while our
simulations were carried out for a two-dimensional system,
the transition should take place for three-dimensional solidi-
fication structures as well.

We believe our simulations may also offer an explanation
for the observations of Ref. [7], which examine the role of
interface kinetic anisotropy in the transition from dendritic to
dense-branched crystal morphology. This work showed that
the addition of kinetic anisotropy—determined quantitatively
from careful molecular dynamics simulations—was not suf-
ficient to predict (1) the experimentally observed dendrite to
dense-branched transition in pure nickel, or (2) a shift in the
dendrite velocity at high undercooling. The authors specu-
lated that a possible reason is that the experimental samples
they compared their simulations to may not in fact be “pure”
nickel, but may contain trace impurities, i.e., be a binary
alloy, requiring in fact a model similar to that studied in this
work.

As a final note, thermal instabilities may also affect the
morphology of the solidification front when the thermal dif-
fusion length a/v becomes comparable to the scale of the
growing crystal. This occurs in both the limits of large crys-
tal sizes and low growth velocities and small crystal sizes
and high growth velocities. Nevertheless, there is a window
in which the crystal size is too small to be affected by the
thermal instability and thus spherical morphologies occur
above the critical undercooling. We are currently examining
this interplay between solute and thermal instabilities, and
will report on this investigation in the future.
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